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A theory of the process of wet fiber formation is constructed. Calculated re- 
suits are compared with experimental data. 

In the wet method of fiber formation, a polymer solution is fed through a spinnerette. 
The polymer emerges from the spinnerette in the form of filaments, which then enter a bath 
filled with a low-molecular-weight precipitant and a solvent (such as water and sulfuric 
acid, in the case of fibers of polyoxadiazole). The filaments harden as a result of a change 
in the composition of the polymer system during counter diffusion of the precipitant and sol- 
vent. Here, the precipitant enters the filament material from the bath, while the solvent 
diffuses into the bath. When the concentration of precipitant inside the filaments reaches 
a certain value, the polymer system begins to coagulate. The high-polymer phase formed as 
a result of coagulation flows poorly due to its high viscosity. This leads to the appear- 
ance of a hardened layer on the surface of the filament, accompanied by a sharp change in 
the rheological properties of the fibers and an increase in the variation of these properties 
over the fiber cross section. The stretching of the fibers has nearly ceased, and they are 
wound about the receiving roller. 

Several monographs [i, 2] have studied - at least quantitatively - many general prin- 
ciples underlying the formation of chemical fibers. However, the quantitative theory of the 
process remains in need of further development. For example, in theoretical studies of the 
flow during wet formation [3, 4], investigators used empirical dependences of the viscosity 
of the filament on the concentration of the precipitant diffusing inside it. Such depen- 
enees do not as a whole reflect the physics of the given process. Our goal here is to con- 
struct a substantiated physical theory of fiber formation by the wet method. 

The rate of coagulation is fairly high for the wet method of fiber formation, and it 
can be assumed that coagulation occurs almost instantaneously after the precipitant reaches 
critical concentration in the fiber [5]. Given a sufficiently high concentration of pre- 
cipitant in the bath, a rigid shell of coagulated polymer appears in the surface layers of 
the fiber immediately after the polymer leaves the spinnerette. Thus, in such "intensive" 
regimes of spinnerette extrusion, the growing shell of the fiber is deformed in the bath. 
This deformation completely determines the tensile force on the forming filament. Mean- 
while, the liquid core of the filament remains nearly unstressed. The resulting structure 
of such fibers is quite nonuniformand is undesirable. As an example, in the formation of 
fibers from a 5.3% solution of poly-p-phenylene-oxadiazole (POD) in 98% sulfuric acid in 
precipitating baths containing mixtures of sulfuric acid (solvent) and water (precipitant), 
"intensive" formation regimes occur at an H2SO 4 content (by wt.) from 0 to 40%, i.e., at pre- 
cipitant concentrations greater than 60%. 

In "mild" regimes, when the concentration of precipitant in the bath is fairly low, a 
stable shell appears on the surface of the filament only at a certain distance from the 
spinnerette, and there is a lengthy liquid section of fiber in which there is appreciable 
tension of the polymer solution. The tension ends with the appearance of the solid sheath, 
which undergoes almost no deformation at the values of longitudinal load typical of the 
fiber-forming operation. Thus, for the example examined above involving the formation of 
fibers from a POD solution, the liquid section of filament near the spinnerette appears at 
H2SO 4 concentrations exceeding 40% (less than 60% precipitant in the bath). The presence of 
the liquid section sharply reduces the tensile force on the filament and significantly in- 
creasesthe maximum polymer extraction [6, 7]. In this ease, the structure of the fiber is 
more uniform than in "intensive" regimes. 
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Here, we will study only "mild" formation regimes. It is assumed that a stable shell 
is formed in the cross section of the filament at a certain depth under its surface. Here, 
deformation ceases and the coagulation rate is commensurate with the receiving rate. The 
polymer system remains liquid up to this section and its rheological charactristics remain 
constant. 

The method of calculation being proposed here can also be used to describe the process 
of dry-wet formation, when the liquid polymer filament moves in an intervening layer of air 
between the spinnerette and the bath. The filament then hardens almost instantaneously as 
it enters the "hard" bath. 

First let us examine the flow of concentrated solutions in the channels of a spinner- 
ette (at -s E x ~ - 0). For relatively short spinnerettes with a length/diameter ratio 
having the value 0(i), friction of the solution against the wall is negligible in a number 
of cases and the motion can be approximately characterized as quasiunidimensional flow under 
uniaxial tension. This approximation acquires greater validity if we consider theviscosity 
anomaly typical of viscoelastic spinning solutions. This anomaly has the effect of reducing 
friction against the wall. The velocities of spinning solutions are low in wet-forming and 
the inertial forces can be ignored compared to the internal forces in the liquid due to the 
entropy-related elasticity of the polymer macromolecules. Thus, the balance equation for 
the momentum of the polymer solution during flow in a spinnerette with the cross section 
f(x) will be 

d [(--P+~x)f]-{-P d - - ~  = 0 .  ( 1 )  
dx dx 

The channels in the spinnerette are circular in cross section. 

In the steady-state case being examined here, the steady-state flow rate in the channel 
does not change. Thus 

V[ = q = const. ( 2 )  

Now let us proceed to description of the motion of the spinning solution in the form- 
ing fiber after it leaves the spinnerette. In the wet method of forming, the tensile force 
on the fiber may change along the path of its formation. Such a change will be due mainly 
to the viscous friction created by the contents of the precipitate bath. Wet formation is 
characterized by low fiber velocities (~0.1 m/sec) and a ratio of the viscosity of the poly- 
mer solution to the viscosity of the bath liquid on the order of 10 s. As was shown in [6], 
the length of the liquid section of fiber is on the order of one-tenth of the path traveled 
by the fiber in the precipitation bath, i.e., on the order of 0.1 m. Given these conditions, 
estimation of the friction acting on the liquid part of the fiber from the side of the bath 
contents yields a value which is more than an order lower than the longitudinal force in the 
fiber. Thus, in calculating flow in the liquid part of the fiber, we will ignore friction. 
As a result, the motion of the liquid in the fiber can be examined in a quasiunidimensional 
approximation [8], ignoring the change in velocity across the fiber. Following custom and 
also ignoring inertia and interracial energy, we obtain the momentum balance in the liquid 
part of the fiber 

d 
- - [ ( - - p  + ~ ) f ]  = o, - -  p + %~ = o, ( 3 )  
"dx 

from which 

[%~ = f ( x ~  - -  ~y )  = F = const ,  ( 4 )  

with the cross-sectional area of the fiber to be determined in the course of the solution 
of the problem. 

Assuming the volume flow rate of polymer solution to be constant on the liquid section 
of the fiber being examined - in accordance with the experimental data in [6] - we write 
the quasiunidimensional mass balance inside the fiber in the form (2). It should be noted 
that the cross section of the fiber is assumed to be circular and the flow is assumed to 
be steady. 
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In contrast to the case of formation from a melt - where the increase in viscosity dur- 
ing fiber cooling is usually greater than the elastic stresses in the liquid (which in sever- 
al cases makes it possible to restrict investigation to a Newtonian rheological model) - in 
wet-forming the flow is generally isothermal not only in the spinnerette channels, but also 
in the fibers. Here, the question of describing the rheological behavior of the solution 
becomes of fundamental importance. The rates of deformation (tension) during flow in the 
spinnerette channels are high - on the order of 102 i/sec - while the residence time of a 
fluid particle in the constricted part is ~10 -2 sec. The rates of deformation in the fiber 
are relatively low (~i i/sec), while the characteristic time of deformation is ~i sec. Un- 
der such conditions, the tension of the macromolecular chains in the channel [9] and the 
associated increase in internal stresses in the polymer liquid are important, as is the dif- 
fusion of the macromolecules [9, i0]. The study [ii] derived the governing rheological 
equations, making it possible to describe flow with intensive strains leading to stretching 
of the macromolecular chains in the spinnerette. The equations simultaneously describe the 
effect of diffusion of the macromolecules and can be written in the form 

d_.J~ = Vv.T_I_~.Vvr+.~23 GoD - 1 (~__~2)____.J__~, ( 5 )  
dt  ~B ~c 

= [ d ~ e x p  t - - ~  1 ] ~ Q (*, t )  - -  , 
TC " ~c -3- J ( 6 )  

d'.o {tv,(O.,ol Iv, (O',ol } 
Q = J IF,'t', , . .o ,"  " 

E q u a t i o n s  ( 5 )  and ( 6 )  g e n e r a l i z e  t h e  D o i - E d w a r d s  g o v e r n i n g  r h e o l o g i c a l  r e l a t i o n  [10]  
(in the one-mode variant) to the case of intensive strains leading to stretching of macro- 
molecular chains in the spinnerette. 

Here, it is assumed that the moment of the beginning of deformation of a fluid particle 
(at the inlet of the spinnerette channel) corresponds to t = 0. 

Equations (5) and (6) were obtained in [ii] on the basis of the macromolecular dynamics 
of concentrated polymer systems. The relaxation times ~C and T B entering into these equa- 
tions are related by the equality T C = 3NT B. The number of subchains in a macromolecule N 
depends on the number of bonding points in the macromolecule, which is in turn dependent 
on the solution concentration. 

In a quasiunidimensional approximation, the fluid particle undergoes tension both in 
the channel and in the fiber. Thus, the components of the tensor O needed for calculations 
using (6) have the form: 

= 1 - -  
z 3 _ _  1 l / U - -  1 ' 

/ - -  

arctg ]/Xs-- 1 1 arctg-V'~-- l ] V(t) [ 
Quu = 2 l / T ~  1 2 ()~ - -  t) 1 - -  -[/2g--~-'T J ' ~' ---- V ('~)" 

(7) 

In the spinnerette channels, the stresses are calculated by integrating differential 
equations obtained from (5): 

V d'~x------5-x = 2Txx d__~V -4- ~ G O dl /  1 (,cx x __ T2xx ) __ Tx____y_x ' 
dx  dx  " 3 dx  "cB "~c 

V d'%u dV G O dV 1 . (,~yy _ _ .  "c2YY ) - - .  T u u  
- -  ~ - -  - -  T y y  - -  - -  

dx  dx 3 dx  "r B TC 

where the velocity V is known from (2) [since f(x) is assigned in the channel]. 

At the channel inlet, at x = -~, we assume that ~xx = Zyy = 0. 

The stresses up to the channel outlet (x = -0) are thus calculated. 

Now let us examine the calculation of the flow in the fiber on the formation section. 
We use (2) and (4) to obtain 

(8) 
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x ~  -- ~y = VF/q. ( 9 ) 

The stresses Xxx and ~vv and the velocity V are found by simultaneous solution of Eqs. (8) 
and (9) using (6) and [7). The calculations are performed by means of iterations up to 
self-consistency of the fields of Txx, ~yy, and V. 

In the quasiunidimensional model we are using, the expansion of the jet of solution 
(Barris effect) occurs instantaneously after the solution leaves the channel. In reality, 
the expansion occurs over a section of a length less than 10 -a m from the edge of the chan- 
nel. Here, the total length of the liquid fiber-formation section is ~10 -l m, which fully 
justifies theuse of theinstantaneous expansion model adopted here. Consequently, calcu- 
lation of flow in the filament at the formation stage is begun at the section x = +0, cor- 
responding to the maximum expansion of the jets of solution after they leave the spinnerette 
channels. 

Let us proceed to calculation of the parameters of the filament at x = +0. Assuming 
that df/dx = 0 at the end of the channel (near x = -0), we use Eqs. (1)-(3) and (5) to ob- 
tain the conservation conditions at the discontinuity corresponding to expansion of the 
filament upon discharge from the spinnerette: 

;VlX=+O 
,x=-o = O, [(xxx-- p ) f l l - _  +~ = O, (10)  

1 F+o= Oo tvl=+~ 

From h e r e ,  we u se  Eqs.  (2 )  and (4)  t o  o b t a i n  a c u b i c  e q u a t i o n  f o r  d e t e r m i n a t i o n  o f  t h e  
v e l o c i t y  V+ in  t h e  i n i t i a l  s e c t i o n  o f  t h e  f i l a m e n t :  

- -0 .  

The values of the stresses Zxx- and Zyy- in the outlet section of the channel are 

known from the results of integration of Eqs. (8). Of course, the outlet cross section of 
the spinnerette channel f_ is also known. Accordingly, from (2) we also know the velocity 
V_ = V(x = -0). The longitudinal force in the filament can also be assigned in place of 
V I. The final value of F is determined during iteration in order to obtain the necessary 
fiber receiving velocity V I (in practice, the velocity V I rather than the force F is pre- 
scribed on the receiving device). Taking the value of V+ obtained from Eq. (ii), we use (2) 
to find f+ = q/V+ and, thus, the expansion of the filament at the outlet of the spinnerette 
b = f+/f_. 

We use the second condition of (i0), the second equation of (3), and Eq. (4) to find 
the pressure at the channel outlet 

p_ = ,G  ____C_ F (12)  
f -  

Integrating Eq. (i) with allowance for the results of integration of the first equation 
of (8) and (12), we find the pressure distribution along the channel and, in particular, the 
pressure P at the channel inlet that is needed to maintain flow at the rate q with the pre- 
scribed force F (or, with allowance for the iterative process, with the velocity Vl): 

F -~f d l n f  dx. (13) P = p ( x = - - l ) ~  f- + j ~  
-o  dx 

By virtue of the last two conditions of (i0), the stresses in the initial section of 
the filament are equal to 

3 ' Tyy -~- ~ - - - ~ "  l - 3 

It is natural that Eqs. (14) satisfy Eq, (9) with allowance for (ii). 

To solve the above-formulated dynamic problem, it is necessary to determine the time 
during which a stable shell is formed by diffusion of the precipitant and coagulation of the 
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polymer and the velocity reaches its maximum value - the receiving velocity VI. To do this, 
we examine the equation of diffusion of the precipitant in an individual element of the fiber 

o~--  y ov Y ( 1 5 )  

with boundary conditions in the form 

~c 
y = 0 -- 0 

Oy t>to" (16) 
Oc v = R (t) - -  O = qw (t) 
aV 

An evaluation made with the use of laminar boundary-layer theory [12] shows that the 
thickness of the diffusion layer near the fiber surface in the bath is on the order of one- 
tenth of its radius. Thus, the characteristic time over which a steady-state concentration 
profile is established in the boundary layer is approximately one-hundredth the time re- 
quired inside the fiber (the coefficients of diffusion of the precipitant in the bath and 
inside the fiber are the same [13]). Thus, the precipitant concentration profile in the 
boundary layer near the fiber surface in the bath can be considered quasistationary, and 
we can use the following relation [4] to determine the precipitant flow rate: 

q w = - - k [ c . - - c ( R ,  t)], (17)  

, 1 R V  
kR = 0 , 4 7 R e S S c S  R e - -  , Sc--- �9 
D ' v D 

We will use an integral method which is widely employed in boundary-layer theory [12], 
representing the solution of (15) in the form 

c (t, V) = A (t) + B (t) V 2, ( 18 ) 

where A(t) and B(t) are coefficients dependent on time. 

Polynomial (18) obviously satisfies boundary condition (16) at y = 0. 

Using Eqs. (15), (16), and (18), we obtain a differential equation to determine A: 

dA c=--A {[ 4k -dT-] k [R 2 dk + 2 ( D +  k R ) ~ t ~ . J _ 4 k  2} (19)  d---[- -~ 4P + kR " --ff- (2D + kR) - -  R dk + 2D + kR dt 

The coefficient B is connected with A by the relation 

B = k (c= - -  A) 

R (2D + kR) 

We write the initial conditions t = to, A = 0 for Eq. (19). In accordance with (18), 
these conditions correspond to zero concentration of the precipitant on the fiber axis at 
the moment of discharge of the particle from the spinnerette channel. 

At the same time, we use (18) and (20) to find that at t = t o 

(20) 

B(to) = kc= , c(R, to)= cookR (21)  
R (2D + kR) 2D + kR 

Thus, it is assumed that a certain amount of precipitant is already present inside the 
filament at the moment it leaves the channel. This corresponds to nearly instantaneous 
matching of the precipitant concentration profiles in the bath and the fiber element immedi- 
ately after discharge of the element from the channel. It should be noted that for the 
actual values of the quantities entering into (21), c(R, to) is appreciably lower than the 
concentration c, at which polymer coagulation occurs on the fiber surface. The coagulated 
shell will be stable (will not decompose) only when it has reached a certain thickness, i.e., 
when the concentration of precipitant c, is realized a certain depth under the fiber surface. 
Only at this moment of time does deformation of the fiber cease. 
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Fig. i. Diagram of spinnerette channel. 

Fig. 2. Change in the velocity of the solution in the fiber 
along the path of formation with different fiber receiving 
velocities: i) V I = 0.05 m/sec; 2) 0.178; 3) 0.06; 4) 0.27. 
For curves i and 2, the volume flow rate of spinning solu- 
tion q = 0.32.10 -9 mB/sec; 3, 4) 0.485.10 -9 m3/sec. The re- 
sults of the calculations are shown by curves 1-4, the ex- 
perimental data in [6] is shown by the triangles; the calcu- 
lations were performed with D_ = 0.15.10 -3 m. V, m/sec; x, 
m. 

The system of equations of the problem (2), (7)-(9), (II), (14), (17)-(20) is closed 
and makes it possible to find the moment of formation of a stable shell and the distribution 
of velocity and stress on the formation section. 

The longitudinal coordinate of the liquid elementis determined by the integral 

t 

x = . I  Vdl - - t  
0 

The proposed method of calculation of the process of wet formation was realized for the 
case of formation of fibers from a POD solution whose rheological characteristics - measured 
in a shear flow - were reported in [14]: no = 200-320 Pa.sec, (2~xya/N1)l~+0 = 600-1000 N/m 2. 

Using the Doi-Edwards governing rheological equation [multimodal analog (6)], we find that 
(2~xy2/Nl)i~§ = G0/6. We find from this that the elastic modulus G o = 3600-6000 N/m 2. Also, 

using the Doi-Edwards relation again we find that ~C = 60q0/(~2G0 ) = 0.19-0.53 sec. The cal- 
culated values of elastic modulus and maximum relaxation time can be regarded only as esti- 
mates in terms of order of magnitude, since the polydispersity of the polymer may have affect- 
ed the rheological behavior of the POD solution in the experiments in [14]. Also, the number 
of bonds in the macromolecule in [14] was small, so that N ~ I. The same applies to the ex- 
perimental data in [6] on fiber formation with which we are comparing our calculated results. 
Thus, proceeding on the basis of the best agreement between the theoretical data and the ex- 
perimental data in [6], we chose the following values of the parameters in one of the vari- 
ants of the calculations: Go = 8'103 N/m2, ~C = i.i sec, ~B = 0.3 sec. These values are 
close to the estimates presented above using the results of rheological measurements [14]. 
They remain the same in other calculation variants. 

The critical concentration of precipitant (water) in the fiber at which coagulation of 
the polymer system occurs is 30% [15]. The coefficient of diffusion of water in the water- 
sulfuric-acid system is 0.6.10 -9 m2/sec both inside the fiber and in the bath (see [16], 
for example). 

The article by G. A. Belinskii et al. in the same issue of this journal compares theo- 
retical and experimental methods of determining the flow in the channels of a spinnerette 
and the expansionof free jets at the outlet of the spinnerette. The articlealso examines 
semiempirical methods of allowing for two-dimensional effects in the case of flow in a 
spinnerette channel. Thus, we willproceed immediately to calculation of the flow as a 
whole. The geometry of the spinnerette channel is the same as in the article by Belinskii 
(Fig. i). The parameters of the spinnerette had the following values: s = 0.2.10-3 m, 2~ = 
60 ~ , L I = L 2 = 0.107-10 -3 m, D_ = 0.8-10 -4 m or 0.15,10 -s m. In the calculations, we set 
2~ = 42 ~ to allow for the effect of the formation of the inlet jet (see the article by 
Belinskii). 
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Change in the tensile stresses in the fiber along 
the region of formation in relation to the receiving veloc- 
ity V~: V: =0.05 m/sec(fiber extrusion ratio E= VI/V+ = 5.7); 
2) V I = 0.i m/sec (E = ii); 3) V l = 0.178 m/sec (E = 19); the 
calculations were performed with D_ = 0.15.10 -3 m, q = 0.32" 
10-9 m3/sec" (~xx - ~yy), N/m2" 

Fig. 4. Dependence of the tensile force in the fiber on the 
receiving velocity V I. Theoretical curves: i) concentra- 
tion of precipitant in the bath c~ = 0.4, q = 0'.32.10 -9 mS/ 
sec, D_ = 0.15.10 -3 m; 2) c~ = 0.4, q = 0.95"I0 -l~ m3/sec, 
D_ = 0.08.10 -3 m; 3) c~ = 0.53, q = 0.95"10 -I~ m3/sec, D_ = 
0.08"10 -3 m; the symbols with the corresponding numbers show 
experimental data [7]. F, N. 

Figure 2 shows calculated profiles of velocity in the filament and the corresponding 
experimental data [6] (the outlet diameter of the spinnerette hole D_ = 0.15.10 -3 m). The 
results shown in Figs. 2 and 3 correspond to a precipitating bath containing 60% sulfuric 
acid and 40% water. This is the bath composition most often employed in practice. The co- 
efficient of expansion of the filaments upon discharge from the spinnerette channels under 
the conditions corresponding to Fig. 2 (D_ = 0.15.10 -3 m) changed in the calculations within 
the range 1.39 ~ B, ~ 1.42 (B, = D+/D_ = /b). In the case of the calculations discussed 
below, with D_ = 0.8"10 -4 m, the expansion coefficient B, ranged from 1.65 to 1.77. 

There is currently no data on the thickness at which the shell of the fiber becomes 
stable. Thus, in one calculation variant in which the theoretical and experimental rela- 
tions V = V(x) agreed, we chose the condition ~(0.85 R,t,) = c, as the condition for deter- 
mining the moment of formation of a stable shell, i.e., we reasoned that the shell becomes 
stable when it reaches the thickness 0.15 R. This value remained the same in all of the 
other calculation variants. 

Figure 3 shows the change in the tensile stresses in the fiber along the path of forma- 
tion in relation to the receiving velocity or fiber extrusion ratio. In rheological model 
(5) and (8), the longitudinal stresses are linearly related to the longitudinal orientation 
of the macromolecule in the fiber. Thus, Fig. 3 also illustrates the longitudinal orienta- 
tion of the macromolecules in the fiber at the spinnerette extrusion stage. Since there is 
a direct connection between the longitudinal orientation of the macromolecules of the poly- 
mer in the fiber and its strength [17], Fig. 3 also gives information on the increase in the 
strength of the fiber with an increase in receiving velocity. 

Figure 4 shows theoretical and experimental dependences [7] of the tensile force in the 
fiber on the receiving velocity with different values of POD solution flow rate and differ- 
ent precipitating-bath compositions. We should point out the sharp increase in the force F 
as the composition of the bath approaches the boundary of the region of "intensive" regimes 
of fiber formation (with c~ + 0.6). 

The results obtained, when compared with the experimental data, permit the conclusion 
that, on the whole, the proposed theoretical model satisfactorily reproduces the character- 
istics of the wet formation process and can be used in practical calculations. 
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In constructing the method used to calculate the fiber-formation process with allowance 
for flow in the spinnerette channel, we proceeded on the basis of a quasiunidimensional model 
similar to the model used in [18]. 

NOTATION 

p, pressure; V, flow velocity; f, cross-sectional area of spinnerette channel (at -s 
x g -0); at x ~ +0, f and R denote the area and radius of the fiber cross section (f = ~R2); 
Ox and Oy, longitudinal and =adial coordinate axes; Oxx = ~xx - [yy; Txx and ~yy, longitudi- 
nal and radial components of the deviator of the stress tensor T; v, velocity vector; D, 
strain-rate tensor; Tz, tensor of the stresses due to disequilibrium of the system of bond- 
ing points of a macromolecule; ~C, maximum relaxation time of stresses due to disequilibrium 
of the system of bonding points of the macromolecule (characteristic time of relaxation bydif- 
fusion); G o , elastic modulus; Q , tensor dependent on the strain history; F~(t), tensor of 
strain gradient from the moment �9 to the actual moment of time t; u 0, unit vector randomly 
oriented in space; I, unit tensor; N, number of subchains of the macromolecule; q, fluid 
flow rate; F, tensile force in the fiber; VI, fiber-receiving velocity; b, expansion of fi- 
ber at outlet of spinnerettechannel; s length of spinnerette channel; P, pressure at inlet 
of channel; to, moment of discharge of fluid particle from the spinnerette, c, concentration 
of precipitant; A and B, coefficients; c~, concentration of precipitant in the bath far from 
the fiber; c,, concentration at which polymer coagulation occurs; D, diffusion coefficient; 
qw, flow of precipitant in the direction of an external normal to the fiber surface; k, mass- 
transfer coefficient; ~, kinematic viscosity of the liquid in the precipitating bath; Re and 
Sc, Reynolds and Schmidt numbers; ~o, viscosity at zero shear rate; Txy, shear stress; N1, 
first difference of normal stresses in shear; ~, shear rate; L l and L2, lengths of the coni- 
cal and cylindrical parts of the spinnerette channel; D+ and D_, diameter of the free jet 
after discharge from the spinnerette channel and diameter of the outlet section of the chan- 
nel; ~, inlet angle of spinnerette; B,, coefficient of expansion of the free jet; t,, moment 
of attainment of a stable shell; E, fiber extrusion ratio. Indices: - and + denote quanti- 
ties in the final cross section of the spinnerette channel (before expansion of the fiber) 
and in the initial cross section of the fiber (after expansion). 
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